1 The Pie-Crusting Technique for Capsular

2 Management during Hip Arthroscopy

4	Jorge Chahla, MD, PhD ¹ Benjamin Sherman, DO ² , Frank Wydra, MD ¹ and Michael B.
5	Gerhardt, MD ¹
6	
7	¹ Cedars Sinai Kerlan Jobe Institute, Santa Monica, CA
8	² Riverside University Health System, Moreno Valley, CA
9	

10 **Level 1:** Hip

11 Level 2: Capsule

12

3

13	Corresponding	Author:
----	---------------	---------

14 Jorge Chahla, MD, PhD

- 15 2020 Santa Monica Boulevard, Suite 400,
- 16 Santa Monica, CA 90404, USA
- 17 jachahla@msn.com

19 Abstract

21	Hip arthroscopy is commonly performed for the treatment of
22	femoroacetabular impingement (FAI) and labral pathology. While performing
23	arthroscopy for FAI, a capsulotomy is often utilized to maximize access and allow
24	for improved visualization. In performing an extended interportal or T capsulotomy,
25	the iliofemoral ligament is transected, which can lead to micro or gross instability.
26	The purpose of this technique article is to describe an alternative approach to the
27	standard T capsulotomy using a pie crusting technique, which provides improved
28	visualization of the femoral head-neck junction during the femoroplasty without the
29	need for an extended capsulotomy and can also serve to create venting holes that
30	prevent hematoma formation within the capsule.

33 Introduction

34

35 Hip arthroscopy is commonly performed for the treatment of 36 femoroacetabular impingement (FAI) and labral pathology. Cross-sectional analysis 37 of national patient databases have demonstrated a growth in hip arthroscopy 38 surgeries of approximately 250% from 2007 to 2011.¹ As the popularity of this field 39 grows, there is an expanding interest in surgical techniques to optimize patient 40 outcomes. While performing arthroscopy for FAI a capsulotomy is often utilized to 41 maximize access to the head-neck junction to perform osteoplasty. The hip capsule 42 consists of three ligaments: the pubofemoral, iliofemoral and ischiofemoral 43 ligaments, which provide hip stability in rotation and translation.²⁻⁴ The iliofemoral 44 ligament is located anterolaterally and is particular important for stability when the 45 hip is placed into extension and external rotation.² In performing an interportal or T 46 capsulotomy, the iliofemoral ligament is transected, which can lead to micro or 47 gross instability.5-7

48

Capsular repair after arthroscopy may mitigate the destabilizing effect of
transection of the iliofemoral ligament and compared with no capsular repair has
demonstrated improved sport-specific outcome scores and lower revision rates.⁶
Adding a perpendicular arm to the interportal capsulotomy (T capsulotomy), can
add further morbidity if not correctly addressed at the conclusion of the case and/or
add surgical time to an already challenging procedure. Therefore, the purpose of
this technique article is to describe an alternative approach to the standard T

56	capsulotomy using a pie crusting technique, which provides improved visualization
57	of the femoral head-neck junction during the femoroplasty without the need for an
58	extended capsulotomy and can also serve to create venting holes that prevent
59	hematoma formation within the capsule.
60	
61	Surgical Technique
62	
63	Indications:
64	
65	Patients undergoing hip arthroscopy requiring capsulotomy for improved
66	visualization of peripheral compartment pathology. Video 1.
67	Advantages/disadvantages, pearls and pitfalls of this technique are summarized in
68	table 1 and 2, respectively.
69	
70	Preoperative Preparation and Positioning:
71	
72	Patients are induced under general anesthesia and placed into stirrups
73	utilizing a distractor system table (Smith and Nephew, Andover, MD). A wide
74	peroneal post is used to minimize neurologic damage to the pudendal nerve and
75	provides lateral translation to the femoral head. Traction is placed with the hip in 10
76	degrees of flexion and lateral tilt, slight internal rotation and neutral abduction.
77	Approximately 1 cm of joint distraction is adequate and is confirmed with
78	fluoroscopy.

80 <u>Portal and Cannula Placement:</u>

01	
82	Surface anatomy is marked out including the superior border of the pubis,
83	the anterior superior iliac spine (ASIS) and the greater trochanter. A 70°
84	arthroscope (Arthrex, Naples, FL) is used to perform a diagnostic arthroscopy to
85	evaluate the status of the labrum and assess for associated pathologies such as bony
86	impingement, cartilage lesions, loose bodies, synovitis, or adhesions.
87	
88	Accessing the peripheral compartment:
89	
90	Traction is released to relax the capsule and allow for improved
91	maneuverability. The hip is placed into flexion, slight external rotation and
92	abduction at first and brought into extension to allow for a comprehensive review of
93	the CAM impingement and allow for a more accurate visualization of the bony
94	deformity.
95	
96	Capsule Pie Crusting
97	
98	A standard interportal capsulotomy is made, and excursion tested. If capsular
99	excursion is not sufficient, an anterolateral full-thickness capsular perforation is
100	made 1 cm distal to the original capsulotomy (most anteriomedial aspect of the
101	capsulotomy) with the use of a radiofrequency (RF) probe. Capsular excursion is

102	then re-tested and if visualization is still not optimal, a second perforation is made
103	just lateral to the first one and 1 cm distal to the original capsulotomy. A third
104	perforation can also be performed more laterally and adjacent to the second
105	perforation. The arrangement of the perforations is demonstrated in figure 1.
106	
107	<u>Osteoplasty</u>
108	
109	Once an optimal exposure has been achieved, a 5.5mm arthroscopic burr
110	(Arthrex, Naples, FL) is used to gently re-contour the femoral neck until a dynamic
111	exam of the hip demonstrates no residual impingement.
112	
113	<u>Capsular Repair</u>
114	
115	To repair the interportal a suture shuttling device (Pivot Injector, Stryker)
116	was utilized to place three #1 vicryl sutures from anterior to posterior (figure 4).
117	Once this was completed, all instruments were removed from the joint. The wounds
118	were closed using 4-0 nylon sutures.
119	
120	Postoperative Management
121	
122	For the first two weeks after surgery, the patients are allowed to ambulate
123	with crutches and may place up to 20 pounds of weight on their operative extremity
124	with the foot flat. Early range of motion is performed using a continuous passive

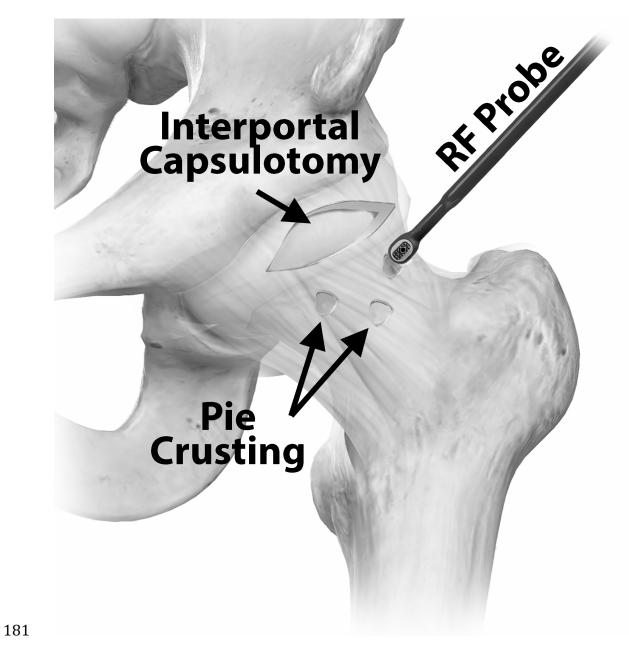
125	motion machine. The patients initiate physical therapy early on and include range of
126	motion, stretching and core/hip strengthening. After two weeks the patients are
127	allowed to progressively weight bear. After approximately four weeks, the patient's
128	rehabilitation progresses to balance and strength training with cycling and
129	advanced based on patient progress. Plyometric and sport specific exercises are
130	allowed at four months post-operatively and patients may return to sport after four
131	to six months post-operatively.
132	
133	Discussion
134	
135	The hip capsule provides significant stability to the hip joint. Performing a
136	capsulotomy during hip arthroscopy sacrifices the integrity of the iliofemoral
137	ligament, which provides stability in hip extension and external rotation. If the
138	capsule is not repaired there is potential for anterior hip pain and instability. ⁸
139	
140	Abrams et al, demonstrated in a biomechanical cadaver study that repair of
141	the capsulotomy restores the native rotational resistance and stability. ⁹ The use of a
142	T capsulotomy has been advocated for increased arthroscopic visualization of cam
143	lesions too distal or large to be viewed using only an interportal capsulotomy. 10 The
144	less aggressive addition of the pie crusting technique to the surgeons arsenal gives
145	an alternative technique to the T capsulotomy. This technique provides adequate
146	visualization of distal and large cam lesions without several of the draw backs to the
147	larger T capsulotomy.

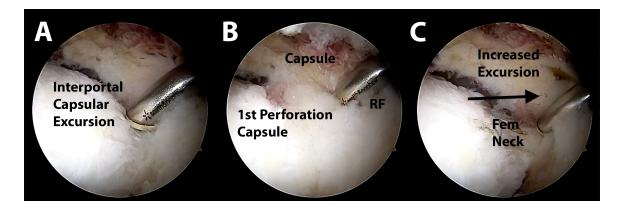
- not destabilize the hip and do not require closure.¹¹ The perforations allow
- 151 improved visualization during surgery and post-operatively may allow for venting
- 152 of fluid and blood to decompress the joint.

154 Video 1 Legend

156	This video demonstrates the creation of perforations in the anterolateral hip
157	capsule after a standard inter-portal capsulotomy has been performed, to maximize
158	capsular excursion. The patient is supine on the traction table with the arthroscope
159	in the anterolateral viewing portal. Capsular excursion is checked with the
160	radiofrequency ablator and found insufficient to adequately view the pathology in
161	the head-neck junction. An anterolateral full-thickness capsular perforation was
162	made 1 cm distal to the original capsulotomy (most anteromedial aspect of the
163	capsulotomy) with the use of a radiofrequency (RF) probe. Capsular excursion was
164	then re-tested, and visualization found to be still not optimal. A second perforation
165	was made lateral to the first one and distal to the original capsulotomy. Capsular
166	excursion was then re-tested, and visualization found to be still not optimal. A third
167	perforation was made further lateral and again distal to the inter-portal
168	capsulotomy. Capsular excursion was then found to be adequate for proper
169	visualization of the pathology.
170	
171	

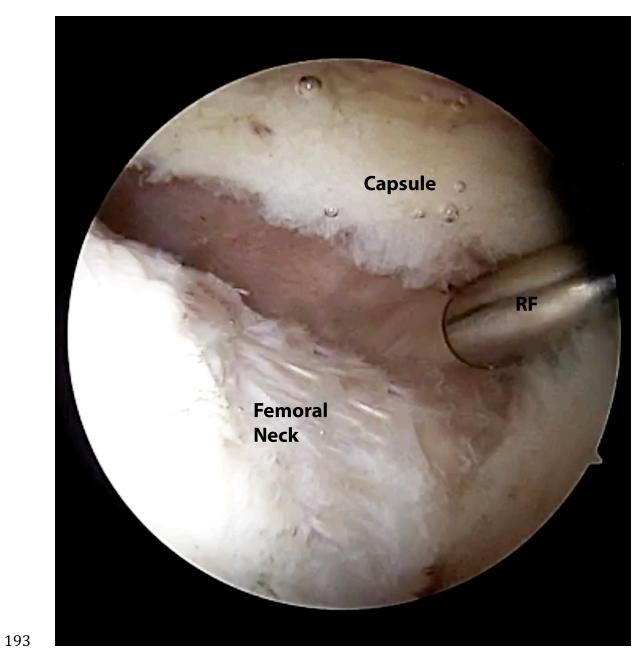
Table 1. Advantages and disadvantages of the pie crusting technique


Advantages	Disadvantages
No closure required	Less extensive visualization than T
	capsulotomy
Improve fluid management	
Post-operative venting	
Reduced surgical time	


Table 2. Surgical pearls and pitfalls for performing the pie crusting technique

Pearls	Pitfalls
The first 2 perforations should be	Perforations placed too closely may
approximately 1 cm distal to the	propagate a tear between the holes
capsulotomy	
Check excursion after each perforation	The interportal capsulotomy still
to minimize the number required	should be closed to prevent instability

180 Figure Legends:



- 182 **Figure 1.** Illustration of the pie crusting technique. A standard interportal
- 183 capsulotomy is performed, and the radiofrequency ablator is used to create small
- 184 perforations in the capsule.
- 185

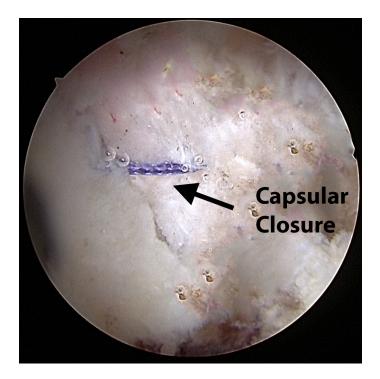


Figure 2. View of the femoral neck and capsule as seen from the anterolateral portal

- using a 70-degree arthroscope. In figure 2A, an interportal capsulotomy has been
- 189 made and the radiofrequency ablator is seen pulling traction to test excursion of the
- 190 capsule. Figure 2B demonstrates the first full-thickness capsule perforation using
- 191 the ablator approximately 1 cm distal to the interportal capsulotomy. Figure 2C
- 192 demonstrates the increase in capsular excursion after the first capsular perforation.

- **Figure 3.** View of the femoral neck and capsule as seen from the anterolateral portal
- using a 70-degree arthroscope. The radiofrequency ablator (RF) is seen pulling
- 196 traction on the anterior hip capsule to check for adequate excursion.

- **Figure 4.** Repair of the interportal capsulotomy is performed using a suture
- shuttling device (Pivot Injector, Stryker) to place three #1 vicryl sutures from
- anterior to posterior.
- 202

204 **References**:

- Sing DC, Feeley BT, Tay B, Vail TP, Zhang AL. Age-Related Trends in Hip
 Arthroscopy: A Large Cross-Sectional Analysis. *Arthroscopy.* 2015;31:2307 2313 e2302.
- Gerhardt MB, Logishetty K, Meftah M, Ranawat AS. Arthroscopic and Open Anatomy of the Hip. In: Sekiya JK SM, Leunig M, Ranawat AS, ed. *Techniques in Hip Arthroscopy and Joint Preservation Surgery*. 1st ed. Philadelphia: Saunders, an imprint of Elsevier Inc; 2011:9-22.
- 212 3. Domb BG, Philippon MJ, Giordano BD. Arthroscopic capsulotomy, capsular
 213 repair, and capsular plication of the hip: relation to atraumatic instability.
 214 *Arthroscopy.* 2013;29:162-173.
- Torry MR, Schenker ML, Martin HD, Hogoboom D, Philippon MJ.
 Neuromuscular hip biomechanics and pathology in the athlete. *Clin Sports Med.* 2006:25:179-197. vii.
- Hewitt JD, Glisson RR, Guilak F, Vail TP. The mechanical properties of the
 human hip capsule ligaments. *J Arthroplasty.* 2002;17:82-89.
- Frank RM, Lee S, Bush-Joseph CA, Kelly BT, Salata MJ, Nho SJ. Improved
 outcomes after hip arthroscopic surgery in patients undergoing Tcapsulotomy with complete repair versus partial repair for femoroacetabular
 impingement: a comparative matched-pair analysis. *The American journal of*
- *sports medicine.* 2014;42:2634-2642.
- Conaway WK, Martin SD. Puncture Capsulotomy During Hip Arthroscopy for
 Femoroacetabular Impingement: Preserving Anatomy and Biomechanics.
 Arthroscopy Techniques. 2017;6:e2265-e2269.
- Shu B, Safran MR. Hip instability: anatomic and clinical considerations of traumatic and atraumatic instability. *Clin Sports Med.* 2011;30:349-367.
- Abrams GD, Hart MA, Takami K, et al. Biomechanical Evaluation of
 Capsulotomy, Capsulectomy, and Capsular Repair on Hip Rotation. *Arthroscopy.* 2015;31:1511-1517.
- 233 10. Camp CL, Reardon PJ, Levy BA, Krych AJ. Creating and Closing the T234 Capsulotomy for Improved Visualization During Arthroscopic Treatment of
 235 Test and Closing the T-
- 235 Femoroacetabular Impingement. *Arthrosc Tech.* 2015;4:e731-735.
- 236 **11.** Glick JM. Hip arthroscopy by the lateral approach. *Instr Course Lect.*237 2006;55:317-323.
- 238